Large Language Models Make Sample-Efficient Recommender Systems

本文是LLM系列文章,针对《Large Language Models Make Sample-Efficient Recommender Systems》的翻译。

大型语言模型使样本高效推荐系统

摘要

大型语言模型(LLM)在自然语言处理(NLP)领域取得了显著进展,在为各种任务生成类似人类语言的文本方面表现出了非凡的能力。这为在推荐系统(RS)中使用它们开辟了新的机会。在本文中,我们专门研究了LLM增强推荐系统的样本效率,它与模型在有限的训练数据量下获得卓越性能的能力有关。由于特征和交互的稀疏性,传统的推荐模型通常需要大量的训练数据。因此,我们提出并验证了我们的核心观点:大型语言模型使样本高效推荐系统。我们提出了一个简单而有效的框架(即Laser),从两个方面验证了这一观点:(1)LLM本身就是样本有效的推荐者;以及(2)LLM作为特征生成器和编码器,使CRM更具采样效率。在两个公共数据集上进行的大量实验表明,Laser只需要一小部分训练样本就可以匹配甚至超过在整个训练集上训练的CRM,这证明了其卓越的样本效率。

1 引言

2 相关工作

3 方法

### 回答1: 知识图谱推荐系统调查 知识图谱推荐系统是一种基于知识图谱的推荐系统,它利用知识图谱中的实体、属性和关系来推荐物品。该系统可以通过分析用户的兴趣、行为和偏好来生成个性化推荐。知识图谱推荐系统可以应用于各种领域,如电子商务、社交网络和文本推荐等。目前,该领域的研究重点包括知识图谱的构建、推荐算法的设计和评估方法的研究等。 ### 回答2: 知识图谱推荐系统是一种依靠知识图谱构建的推荐系统,它不仅考虑用户的历史行为和个人喜好,还考虑了物品的属性、关系和语义信息。近年来,知识图谱推荐系统在学术和工业界都受到了广泛关注和研究。 在知识图谱推荐系统中,建立知识图谱是关键步骤之一。知识图谱通常由实体和关系构成,实体可以是物品或用户,关系则可以是它们之间的交互行为、属性描述等。实体和关系之间的语义信息可以通过数据挖掘和自然语言处理等技术自动构建,也可以手工添加和维护。知识图谱的构建,需要结合业务场景和领域知识,通过不断迭代和优化,以获得更好的推荐效果和用户满意度。 知识图谱推荐系统的核心算法是基于知识图谱的推荐算法,主要包括基于图的推荐算法、基于规则的推荐算法、基于深度学习的推荐算法等。这些算法的基本思想是通过利用知识图谱的结构信息和语义信息,对用户和物品进行匹配和推荐,以提高推荐的准确性和个性化水平。 知识图谱推荐系统的应用场景非常广泛,包括电商推荐、新闻推荐、社交网络推荐等。知识图谱推荐系统可以更好地利用物品之间的关联和用户之间的交互,同时可以结合人类的知识和专业判断,提高推荐的可解释性和可靠性。 未来,随着人工智能和大数据技术的不断发展,知识图谱推荐系统将会得到更广泛的应用和深入的研究,同时也面临着更多的挑战,如数据隐私和安全问题、知识图谱的动态维护和更新问题等。要开展更深入的研究和解决这些问题,需要结合各种学科和技术手段,以推动知识图谱推荐系统的发展和应用。 ### 回答3: 知识图谱是一种用来描述各种实体以及它们之间关系的图形化表示工具,近年来,知识图谱被广泛应用于推荐系统中。知识图谱推荐系统在推荐过程中利用知识图谱中的实体和关系信息,可以有效地改进推荐结果的质量和效率。 针对知识图谱推荐系统的开发和应用,近年来已经涌现出了各种基于知识图谱的推荐算法和框架。例如,基于图注意力机制的知识图谱推荐系统可以通过考虑实体之间的直接和间接关系,生成更准确的推荐结果。还有一些基于深度学习的知识图谱推荐算法,如基于RNN的节点属性与图结构编码的方案,已经被证明在准确性和效率方面都有很高的表现。 此外,还有许多研究集中于知识图谱推荐系统的实际应用。例如,在电影推荐领域,研究表明基于知识图谱的推荐系统能够更准确地预测用户对电影的评价和偏好。在旅游推荐领域,基于知识图谱的推荐系统能够根据用户的兴趣和偏好,为用户提供更加个性化的旅游线路规划。 然而,知识图谱推荐系统仍然面临着许多挑战和问题。例如,在实践中,如何有效地构建和管理知识图谱、如何应对数据稀疏性和冷启动等问题,都需要进一步研究和解决。此外,在知识图谱推荐系统中,如何解释预测结果以及保障数据的隐私性等问题也需要考虑。 总之,基于知识图谱的推荐系统是一个具有广泛研究和应用前景的领域。未来的工作应该更加注重实际应用,并进一步解决相关的技术问题,以提高系统的性能和用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值