MULTI-TASK INFERENCE: Can Large Language Models Follow Multiple Instructions at Once?

本文是LLM系列文章,针对《MULTI-TASK INFERENCE: Can Large Language Models Follow Multiple Instructions at Once?》的翻译。

多任务推理:大型语言模型能同时遵循多条指令吗?

摘要

大型语言模型(LLM)通常被提示在每次推理调用中遵循一条指令。在这项工作中,我们分析LLM是否也具有同时处理多个指令的能力,称为多任务推理。为此,我们引入了MTI BENCH(多任务推理基准),这是一个全面的评估基准,包括25个任务中的5000个实例。MTI BENCH中的每个任务都包含2到3个子任务。正如预期的那样,我们首先证明了多任务推理平均将总推理时间减少了×1.46倍,因为它不需要多次推理调用。有趣的是,与LLM在划分任务时表现更好的预期相反,我们发现,与MTI工作台上的单任务推理相比,LLMA-2-CHAT-70B和GPT-4等最先进的LLM在多任务推理中的性能分别提高了7.3%和12.4%。我们在这个链接上发布了MTI BENCH数据集和我们的代码。

1 引言

2 相关工作

3 MTI BENCH数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值