Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

本文是LLM系列文章,针对《Leave No Context Behind:Efficient Infinite Context Transformers with Infini-attention》的翻译。

不让任何上下文掉队:无限关注的高效无限上下文Transformer

摘要

这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限长输入的有效方法。我们提出的方法中的一个关键组件是一种名为Infini注意力的新注意力技术。Infini注意力将压缩记忆纳入朴素注意力机制,并在单个Transformer块中建立掩蔽的局部注意力和长期线性注意力机制。我们展示了我们的方法在长上下文语言建模基准、1M序列长度的密钥上下文块检索和具有1B和8B LLM的500K长度的书籍摘要任务上的有效性。我们的方法引入了最小有界内存参数,并实现了LLM的快速流式推理。

1 引言

2 方法

3 实验

4 相关工作

5 结论

一个有效的记忆系统不仅对理解LLM的长上下文至关重要,而且对推理、计划、对新知识的持续适应,甚至对学习如何学习也至关重要。这项工作将压缩内存模块紧密集成到朴素点积注意力层中。对注意力层的这种微妙但关键的修改使LLM能够用有限的内存和计算资源处理无限长的上下文。我们表明,我们的方法可以自然地扩展到输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值