Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Model

本文是LLM系列文章,针对《Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for
Text Reranking with Large Language Models》的翻译。

Q-PEFT:大型语言模型文本重排序的查询相关参数高效微调

摘要

参数高效微调(PEFT)方法已被广泛应用于大型语言模型(LLM)中,以改进下行任务,而无需对整个LLM进行微调。最近的研究表明,如何有效地使用PEFT来微调LLM,以对具有令人信服的表现的任务进行排名;存在一些局限性,包括针对不同文档的学习提示是固定的,对特定任务的过度拟合,以及适应能力低。在本文中,我们提出了一种用于文本重新排序的查询相关参数高效微调(Q-PEFT)方法,该方法为LLM提供了关于真实查询的见解,从而促进了从输入文档生成真实查询。具体来说,我们利用查询从连接的文档中提取top-k token,作为上下文线索。我们通过用多头注意力层替换检索机制来进一步增强Q-PEFT,以实现端到端的训练,并覆盖文档中的所有token,引导LLM生成更多特定于文档的合成查询,从而进一步提高重新排序性能。在四个公共数据集上进行了广泛的实验,证明了我们提出的方法的有效性。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值