本文是LLM系列文章,针对《ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction》的翻译。
摘要
在金融分析领域,利用非结构化数据(如财报电话会议)来预测股票表现是一项关键挑战,吸引了学者和投资者。虽然以前的研究使用基于深度学习的模型来获得对ECC的总体看法,但它们往往无法捕捉到详细、复杂的信息。我们的研究引入了一种新的框架:ECC分析器,结合了大型语言模型(LLM)和多模态技术,以提取更丰富、更具预测性的见解。该模型首先总结了文本的结构,并通过检测音频的音调和音高变化来分析说话者的模式和置信水平。这一分析有助于投资者形成对ECCs的总体看法。此外,该模型使用基于检索增强生成(RAG)的方法,从专家的角度精心提取对股票表现有重大影响的焦点,提供更有针对性的分析。该模型更进一步,用额外的分析层(如情感和音频片段特征)丰富了这些提取的焦点。通过整合这些见解,ECC Analyzer可以对股票表现进行多任务预测,包括波动率、风险值(VaR)和不同区间的回报率。结果表明,我们的模型优于传统的分析基准,证实了在财务分析中使