本文是LLM系列文章,针对《LangBiTe: A Platform for Testing Bias in Large Language Models
》的翻译。
摘要
将大型语言模型(LLM)集成到各种软件应用程序中,引发了人们对其潜在偏见的担忧。通常,这些模型是在论坛、网站、社交媒体和其他互联网来源的大量数据上训练的,这些数据可能会在模型中灌输有害和歧视性的行为。为了解决这个问题,我们提出了LangBiTe,这是一个系统评估LLM中是否存在偏见的测试平台。LangBiTe使开发团队能够定制他们的测试场景,并根据一组用户定义的道德要求自动生成和执行测试用例。每个测试都由一个输入LLM的提示和一个相应的测试预言器组成,该预言器仔细检查LLM的响应以识别偏差。LangBite为用户提供LLM的偏见评估,以及初始道德要求和获得的见解之间的端到端可追溯性。
1 动机和意义
2 软件描述
3 说明性示例
4 影响
5 结论
LangBiTe是一个全面的测试平台,旨在系统地评估LLM中是否存在偏差。LangBiTe使开发团队能够确定适合其特定需求的测试场景,并根据用户专门定义的一组道德要求自动生成和执