Empirical Analysis of Dialogue Relation Extraction with Large Language Models

本文是LLM系列文章,针对《Empirical Analysis of Dialogue Relation Extraction with Large Language Models》的翻译。

摘要

对话关系提取(DRE)旨在提取对话中两个论点之间的关系,由于对话中人称代词频率较高,信息密度较低,因此比标准RE更具挑战性。然而,现有的DRE方法仍然存在两个严重的问题:(1)难以捕获长而稀疏的多回合信息,(2)难以基于部分对话提取黄金关系,这促使我们发现更有效的方法来缓解上述问题。我们注意到,大型语言模型(LLM)的兴起引发了人们对评估其在不同任务中的性能的极大兴趣。为此,我们首先研究了DRE中不同LLM的能力,考虑了专有模型和开源模型。有趣的是,我们发现LLM显著缓解了现有DRE方法中的两个问题。一般来说,我们有以下发现:(1)扩大模型大小大大提高了整体DRE性能,并取得了出色的结果,解决了捕获长而稀疏的多轮信息的困难;(2) 与现有方法相比,LLM从整个对话设置到部分对话设置的性能下降要小得多;(3) 和目前的技术相比,LLM在全样本和小样本两种情况下都能提供有竞争力或更优的表现;&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值