本文是LLM系列文章,针对《AGENTSCODRIVER: Large Language Model Empowered Collaborative Driving with Lifelong Learning》的翻译。
AGENTSCODRIVER:大型语言模型支持终身学习的协同驾驶
摘要
联网和自动驾驶最近经历了快速发展。然而,目前的自动驾驶系统主要基于数据驱动的方法,在可解释性、泛化和持续学习能力方面存在重大缺陷。此外,单车自动驾驶系统缺乏与其他车辆的协作和协商能力,这对驾驶安全和效率至关重要。为了有效地解决这些问题,我们利用大型语言模型(LLM)开发了一个名为AGENTSCODRIVER的新框架,使多辆车能够进行协同驾驶。AGENTSCODRIVER由五个模块组成:观察模块、推理引擎、认知记忆模块、强化反射模块和交流模块。随着时间的推移,它可以通过与驾驶环境的不断互动来积累知识、教训和经验,从而实现终身学习。此外,通过利用通信模块,不同的代理可以在复杂的驾驶环境中交换信息并实现协商和协作。广泛的实验表明,AGENTSCODRIVER比现有方法更优越。