LoRAMoE: Alleviating World Knowledge Forgetting in Large Language Models via MoE-Style Plugin

本文是LLM系列文章,针对《LoRAMoE: Alleviating World Knowledge Forgetting in Large Language Models via MoE-Style Plugin》的翻译。

LoRAMoE:通过MoE风格插件缓解大型语言模型中的世界知识遗忘

摘要

监督微调(SFT)是大型语言模型(LLM)的关键步骤,使其能够与人类指令保持一致,并增强其在下游任务中的能力。大幅增加指令数据是使模型与更广泛的下游任务对齐或显著提高其在特定任务上的性能的直接解决方案。然而,我们发现指令数据的大规模增加会破坏以前存储在LLM中的世界知识。为了应对这一挑战,我们提出了LoRAMoE,这是一个新颖的框架,引入了几个低秩适配器(LoRA),并通过使用路由器网络将它们集成在一起,就像混合专家(MoE)的插件版本一样。它冻结了骨干模型,并迫使部分LoRA专注于利用世界知识来解决下游任务,以减轻世界知识遗忘。实验结果表明,随着指令数据的增加,LoRAMoE可以显著提高处理下游任务的能力,同时保持LLM中存储的世界知识。

1 引言

2 动机

3 LoRAMoE

4 实验

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值