xLSTM: Extended Long Short-Term Memory

本文是LLM系列文章,针对《xLSTM: Extended Long Short-Term Memory》的翻译。

摘要

在20世纪90年代,恒定误差转盘和门控被引入作为长短期记忆(LSTM)的核心思想。从那时起,LSTM经受住了时间的考验,并为众多深度学习成功案例做出了贡献,特别是它们构成了第一个大型语言模型(LLMs)。然而,以并行化自我关注为核心的Transformer技术的出现标志着一个新时代的到来,在规模上超过了LSTM。我们现在提出一个简单的问题:当利用现代LLM的最新技术,将LSTM扩展到数十亿个参数,同时减轻LSTM的已知局限性时,我们在语言建模方面能走多远?首先,我们介绍了具有适当归一化和稳定技术的指数门控。其次,我们修改了LSTM存储器结构,得到:(i)具有标量存储器、标量更新和新存储器混合的sLSTM,(ii)具有矩阵存储器和协方差更新规则的完全并行的mLSTM。将这些LSTM扩展集成到残差块主干中会产生xLSTM块,然后将其残差堆叠到xLSTM架构中。与最先进的Transformer和状态空间模型相比,指数门控和修改后的存储结构提高了xLSTM的性能,在性能和扩展方面都表现良好。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值