PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics

本文是LLM系列文章,针对《PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics》的翻译。

PoLLMgraph:通过状态转换动力学揭示大型语言模型中的幻觉

摘要

尽管近年来大型语言模型(LLM)取得了巨大进步,但其实际部署面临的一个特别紧迫的挑战是“幻觉”现象,即模型捏造事实并产生非事实陈述。作为回应,我们提出了PoLLMgraph——LLM的测谎仪——作为一种有效的基于模型的白盒检测和预测方法。PoLLMgraph明显不同于现有的大量研究,后者专注于通过黑箱评估来应对这些挑战。特别是,我们证明,通过可处理的概率模型分析LLM在生成过程中的内部状态转换动力学,可以有效地检测幻觉。在各种开源LLM上的实验结果证实了PoLLMgraph的有效性,其性能远远优于最先进的方法,在TruthyQA等常见基准数据集上AUCROC提高了20%以上就证明了这一点。我们的工作为基于模型的LLM白盒分析铺平了新的道路,激励研究界进一步探索、理解和完善LLM行为的复杂动态。

1 引言

2 相关工作

3 PoLLMgraph

4 实验

5 结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值