A Causal Explainable Guardrails for Large Language Models

本文是LLM系列文章,针对《A Causal Explainable Guardrails for Large Language Models》的翻译。

大型语言模型的因果可解释护栏

摘要

大型语言模型 (LLM) 在自然语言任务中表现出令人印象深刻的性能,但它们的输出可能会表现出不良属性或偏差。将 LLM 引导至所需属性的现有方法通常假定无偏见的表示,并且仅依赖于转向提示。然而,从预训练中学到的表示可能会引入影响转向过程的语义偏差,从而导致次优结果。我们提出了 LLMGuardrail,这是一个新颖的框架,它结合了因果分析和对抗性学习,以在 LLM 中获得无偏的转向表示。LLMGuardrail 系统地识别并阻止了偏见的混杂效应,从而能够提取无偏的转向表示。此外,它还包括一个可解释的组件,用于深入了解生成的输出与所需方向之间的对齐情况。实验表明,LLMGuardrail 在减少偏差的同时,可以有效地将 LLM 引导至所需的属性。我们的工作有助于开发符合所需属性的安全可靠的 LLM。

1 引言

2 背景

3 因果分析

4 方法

5 实验

6 结论

在本文中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值