Accelerating Inference in Large Language Models with a Unified Layer Skipping Strategy

本文是LLM系列文章,针对《Accelerating Inference in Large Language Models with a Unified Layer Skipping Strategy》的翻译。

使用统一的跳过层策略加速大型语言模型中的推理

摘要

最近,动态计算方法通过精心设计的启发式方法或其他预测器跳过了多层计算,从而显示出大型语言模型 (LLM) 的显著加速。然而,在现有方法的解码过程中,不同的样本被赋予不同的计算预算,无法保证稳定精确的加速效果。此外,现有方法通常会跳过层的底部或顶部的多个连续层,从而导致模型的分层表示发生剧烈变化,从而导致性能退化。因此,我们提出了一种 Unified Layer Skipping 策略,仅根据目标加速比选择要跳过计算的层数,然后以平衡的方式跳过相应的中间层计算数量。由于 Unified Layer Skipping 策略独立于输入样本,因此它自然支持流行的加速技术,例如批量解码和 KV 缓存,从而在实际应用中表现出更多的实用性。在机器翻译和文本摘要两个常见任务上的实验结果表明,在给定目标加速比的情况下,与现有的动态方法相比,统一跳层策略显著提高了推理性能和实际模型吞吐量。

1 引言

2 相关工作

3 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值