本文是LLM系列文章,针对《Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling》的翻译。
更小、更弱但更好:通过计算最优采样训练LLM推理者
摘要
从强语言模型(LM)中训练高质量的合成数据是提高LM推理性能的常见策略。在这项工作中,我们重新审视了这种策略在固定推理预算(例如FLOP)下是否是计算最优的。为此,我们研究了使用更强但更昂贵的(SE)模型与较弱但更便宜的(WC)模型生成合成数据之间的权衡。我们评估了三个关键指标的生成数据:覆盖率、多样性和假阳性率,并表明来自WC模型的数据可能具有更高的覆盖率和多样性,但也表现出更高的假阳性率。然后,我们在不同设置下对SE和WC模型的数据进行微调:知识蒸馏、自我提升和一种新颖的弱到强的改进设置,其中较弱的LM向较强的LM教授推理。我们的研究结果表明,在WC生成的数据上进行微调的模型在多个基准和WC和SE模型的多种选择上始终优于在SE生成的数据中训练的模型。这些结果挑战了目前依赖SE模型生成合成数据的做法,表明WC可能是训练高级LM推理机的计算最优方法。