A Few-Shot Approach for Relation Extraction Domain Adaptation using Large Language Models

本文是LLM系列文章,针对《A Few-Shot Approach for Relation Extraction Domain Adaptation using Large Language Models》的翻译。

使用大型语言模型进行关系提取域适应的 Few-Shot 方法

摘要

知识图谱 (KGs) 已成功应用于复杂科学和技术领域的分析,自动 KG 生成方法通常建立在捕获文本中领域实体之间细粒度关系的关系提取模型之上。虽然这些关系完全适用于各个科学领域,但现有模型是在少数特定领域的数据集(如 SciERC)上训练的,并且在新的目标领域表现不佳。在本文中,我们尝试利用大型语言模型的上下文学习功能来执行模式约束的数据注释,为部署在结构、构造、工程和运营 (AECO) 领域研究论文的标题和摘要上的基于 Transformer 的关系提取模型收集域内训练实例。通过评估在域外数据上训练的基线深度学习架构的性能提升,我们表明,通过使用带有结构化提示和最少专家注释的少量学习策略,所提出的方法有可能支持科学 KG 生成模型的领域适应。

1 引言

2 数据

3 实验设置

4 结果和讨论

5 结论

本贡献介绍了我们目前正在进行的关于大型语言模型 &#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值