500xCompressor: Generalized Prompt Compression for Large Language Models

本文是LLM系列文章,针对《500xCompressor: Generalized Prompt Compression for Large Language Models》的翻译。

500xCompressor:适用于大型语言模型的通用提示压缩

摘要

提示压缩对于提高推理速度、降低成本和改善用户体验至关重要。然而,目前的方法面临着压缩比低和评估过程中可能的数据泄漏等挑战。为了解决这些问题,我们提出了 500xCompressor,这是一种将广泛的自然语言上下文压缩为至少一个特殊token的方法。500xCompressor 引入了大约 0.25% 的附加参数,并实现了 6 倍到 480 倍的压缩比。它旨在压缩任何文本,回答各种类型的问题,并且可以被原始的大型语言模型 (LLM) 使用,而无需微调。最初,500xCompressor 在 Arxiv 语料库上进行预训练,然后在 ArxivQA 数据集上进行微调,随后在严格看不见的经典问答 (QA) 数据集上进行评估。结果表明,与使用非压缩提示相比,LLM 保留了 62.26-72.89% 的功能。这项研究还表明,并非所有压缩的token都得到同等利用,并且 K V 值在以高压缩率保留信息方面比嵌入具有显着优势。自然语言提示的高度压缩性,即使对于细粒度的复杂信息也是如此,这表明未来应用和进一步研究开发新的 LLM 语言的潜力很大。

1 引言</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值