Autonomous Prompt Engineering in Large Language Models

本文是LLM系列文章,针对《Autonomous Prompt Engineering in Large Language Models》的翻译。

摘要

提示工程是一项关键但具有挑战性的任务,用于优化大型语言模型 (LLM) 在自定义任务上的性能。这项开创性研究引入了自动提示工程工具箱 (APET),它使 GPT-41 能够自主应用提示工程技术。通过利用专家提示、思维链和思维树等复杂策略,APET 使 GPT-4 能够动态优化提示,从而在单词排序(增长 4.4%)和几何形状(增长 6.8%)等任务中取得重大改进。尽管在复杂任务中遇到了挑战,例如 Checkmate 合一 (-14.8%),但这些发现证明了 APET 在不使用外部数据的情况下自动化复杂的提示优化流程的变革潜力。总体而言,这项研究代表了 AI 发展的重大飞跃,为自主 AI 系统的未来创新提供了一个强大的框架,并强调了 GPT-4 将提示工程理论付诸实践的能力。它为提高复杂任务性能的性能和拓宽这些技术在实际场景中的实际应用奠定了基础。

1 引言

2 文献综述

3 方法

4 结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值