(Debiased) Contrastive Learning Loss for Recommendation

本文是深度学习系列文章,针对《(Debiased) Contrastive Learning Loss for Recommendation》的翻译。

摘要

在本文中,我们通过对比学习的视角对推荐损失进行了系统检查,包括列表(softmax)、成对(BPR)和逐点(均方误差、MSE和余弦对比损失、CCL)损失。我们首次在推荐设置下引入并研究了去偏InfoNCE和互信息神经估计器(MINE)。我们还通过下限分析将这两种损失与BPR损失联系起来并加以区分。此外,我们提出了去偏逐点损失(对于MSE和CCL),并从理论上证明了iALS和EASE这两个最流行的线性模型都是固有的去偏。实证实验结果表明,去偏损失和新引入的互信息损失的有效性优于现有的(有偏)损失。

1 引言

2 对比推荐损失

3 去偏POINTWISE损失

4 实验

5 相关工作

6 结论

本文从对比学习的角度对推荐损失函数进行了全面的分析。我们在推荐设置中引入了一系列去偏损失和新的基于互信息的损失函数——MI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值