本文是深度学习系列文章,针对《(Debiased) Contrastive Learning Loss for Recommendation》的翻译。
摘要
在本文中,我们通过对比学习的视角对推荐损失进行了系统检查,包括列表(softmax)、成对(BPR)和逐点(均方误差、MSE和余弦对比损失、CCL)损失。我们首次在推荐设置下引入并研究了去偏InfoNCE和互信息神经估计器(MINE)。我们还通过下限分析将这两种损失与BPR损失联系起来并加以区分。此外,我们提出了去偏逐点损失(对于MSE和CCL),并从理论上证明了iALS和EASE这两个最流行的线性模型都是固有的去偏。实证实验结果表明,去偏损失和新引入的互信息损失的有效性优于现有的(有偏)损失。
1 引言
2 对比推荐损失
3 去偏POINTWISE损失
4 实验
5 相关工作
6 结论
本文从对比学习的角度对推荐损失函数进行了全面的分析。我们在推荐设置中引入了一系列去偏损失和新的基于互信息的损失函数——MI