本文是LLM系列文章,针对《Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions》的翻译。
Marco-o1:面向开放式解决方案的开放推理模型
摘要
目前,OpenAI o1引发了人们对大型推理模型(LRM)研究的兴趣。基于这一势头,Marco-o1不仅专注于具有标准答案的学科,如数学、物理和编码,这些学科非常适合强化学习(RL),而且更加重视开放式解决方案。我们的目标是解决这个问题:“o1模型能否有效地推广到缺乏明确标准、奖励难以量化的更广泛领域?”Marco-o1由思维链(CoT)微调、蒙特卡洛树搜索(MCTS)、反射机制和创新推理策略驱动,针对复杂的现实世界问题解决任务进行了优化。
1 引言
2 Marco推理数据集
3 通过MCTS扩展解决方案空间
4 推理行动策略
5 实验
6 翻译任务案例研究
7 结论和未来工作
我们的Marco-o1通过整合思维链(CoT)