Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions

本文是LLM系列文章,针对《Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions》的翻译。

摘要

目前,OpenAI o1引发了人们对大型推理模型(LRM)研究的兴趣。基于这一势头,Marco-o1不仅专注于具有标准答案的学科,如数学、物理和编码,这些学科非常适合强化学习(RL),而且更加重视开放式解决方案。我们的目标是解决这个问题:“o1模型能否有效地推广到缺乏明确标准、奖励难以量化的更广泛领域?”Marco-o1由思维链(CoT)微调、蒙特卡洛树搜索(MCTS)、反射机制和创新推理策略驱动,针对复杂的现实世界问题解决任务进行了优化。

1 引言

2 Marco推理数据集

3 通过MCTS扩展解决方案空间

4 推理行动策略

5 实验

6 翻译任务案例研究

7 结论和未来工作

我们的Marco-o1通过整合思维链(CoT)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值