STAR ATTENTION: EFFICIENT LLM INFERENCE OVER LONG SEQUENCES

本文是LLM系列文章,针对《STAR ATTENTION: EFFICIENT LLM INFERENCE OVER LONG SEQUENCES》的翻译。

星注意:长序列上有效的LLM推理

摘要

由于自注意机制的二次复杂性,使用基于Transformer的大语言模型(LLM)对长序列进行推理既昂贵又缓慢。我们引入了Star Attention,这是一种两阶段块稀疏近似,通过在多个主机上分散注意力来提高计算效率,同时最大限度地减少通信开销。在第一阶段,使用跨主机的块本地注意力并行处理上下文。在第二阶段,查询和响应token通过序列全局关注来处理所有先前缓存的token。Star Attention与大多数经过全局注意力训练的基于Transformer的LLM无缝集成,将内存需求和推理时间减少了11倍,同时保持了95-100%的准确性。

1 引言

2 STAR ATTENTION算法

3 实验

4 消融实验

5 结论

本文介绍了Star Attention,这是一种新的块稀疏注意机制,旨在实现基于Transformer的LLM中长序列的高效推理。该方法分为两个阶段:(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值