本文是LLM系列文章,针对《STAR ATTENTION: EFFICIENT LLM INFERENCE OVER LONG SEQUENCES》的翻译。
摘要
由于自注意机制的二次复杂性,使用基于Transformer的大语言模型(LLM)对长序列进行推理既昂贵又缓慢。我们引入了Star Attention,这是一种两阶段块稀疏近似,通过在多个主机上分散注意力来提高计算效率,同时最大限度地减少通信开销。在第一阶段,使用跨主机的块本地注意力并行处理上下文。在第二阶段,查询和响应token通过序列全局关注来处理所有先前缓存的token。Star Attention与大多数经过全局注意力训练的基于Transformer的LLM无缝集成,将内存需求和推理时间减少了11倍,同时保持了95-100%的准确性。
1 引言
2 STAR ATTENTION算法
3 实验
4 消融实验
5 结论
本文介绍了Star Attention,这是一种新的块稀疏注意机制,旨在实现基于Transformer的LLM中长序列的高效推理。该方法分为两个阶段:(1)