本文是LLM系列文章,针对《Leveraging Large Language Models (LLMs) for Traffic Management at Urban Intersections: The Case of Mixed Traffic Scenarios》的翻译。
@[TOC](利用大型语言模型 (LLM) 进行城市交叉口的交通管理:混合交通场景案例)
摘要
由于环境的动态变化,城市交通管理面临着巨大的挑战,传统算法无法快速实时适应这种环境并预测可能的冲突。本研究探讨了大型语言模型 (LLM)(特别是 GPT-4o-mini)改善城市十字路口交通管理的能力。我们使用 GPT-4o-mini 来针对各种基本场景实时分析、预测位置、检测和解决十字路口的冲突。本研究的主要结果是调查LLM是否能够通过提供实时分析来逻辑推理和理解场景,从而提高交通效率和安全性。该研究强调了LLM在城市交通管理领域创造更智能、更具适应性的系统的潜力。结果表明,GPT4o-mini 能够有效地检测和解决交通繁忙、拥堵和混合速度条件下的冲突。在多个交叉路口、有障碍物和行人的复杂场景中,冲突管理也取得了成功。结果表明,LLM的整合有望提高交通控制的有效性,从而实现更安全、更高效的城市交叉口管理。