SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

本文是LLM系列文章,针对《SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot》的翻译。

SparseGPT:大规模语言模型可以一次性精确修剪

摘要

我们首次证明,大规模生成预训练Transformer(GPT)族模型可以在一次操作中修剪到至少50%的稀疏性,而无需任何重新训练,精度损失最小。这是通过一种名为SparseGPT的新修剪方法实现的,该方法专门设计用于在大规模GPT家族模型上高效准确地工作。我们可以在不到4.5小时的时间内在最大的可用开源模型OPT-175B和BLOOM-176B上执行SparseGPT,并且可以达到60%的非结构化稀疏性,而困惑度的增加可以忽略不计:值得注意的是,在推理时可以忽略这些模型中的1000多亿个权重。SparseGPT可推广到半结构化(2:4和4:8)模式,并与权重量化方法兼容。该代码可在以下网址获得:https://github.com/IST-DASLab/sparsegpt

1 引言

生成式预训练Transformer(GPT)系列的大语言模型(LLMs)在广泛的任务中展现出了卓越的性能,但由于其庞大的规模和计算成本,难

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值