本文是LLM系列文章,针对《SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot》的翻译。
摘要
我们首次证明,大规模生成预训练Transformer(GPT)族模型可以在一次操作中修剪到至少50%的稀疏性,而无需任何重新训练,精度损失最小。这是通过一种名为SparseGPT的新修剪方法实现的,该方法专门设计用于在大规模GPT家族模型上高效准确地工作。我们可以在不到4.5小时的时间内在最大的可用开源模型OPT-175B和BLOOM-176B上执行SparseGPT,并且可以达到60%的非结构化稀疏性,而困惑度的增加可以忽略不计:值得注意的是,在推理时可以忽略这些模型中的1000多亿个权重。SparseGPT可推广到半结构化(2:4和4:8)模式,并与权重量化方法兼容。该代码可在以下网址获得:https://github.com/IST-DASLab/sparsegpt。
1 引言
生成式预训练Transformer(GPT)系列的大语言模型(LLMs)在广泛的任务中展现出了卓越的性能,但由于其庞大的规模和计算成本,难