SUFFIXDECODING: A MODEL-FREE APPROACH TO SPEEDING UP LARGE LANGUAGE MODEL INFERENCE

本文是LLM系列文章,针对《SUFFIXDECODING: A MODEL-FREE APPROACH TO SPEEDING UP LARGE LANGUAGE MODEL INFERENCE》的翻译。

后缀解码:一种加速大型语言模型推理的无模型方法

摘要

我们提出了 SuffixDecoding,这是一种新颖的无模型方法,可通过推测解码加速大语言模型 (LLM) 推理。与依赖草稿模型或专门解码头的现有方法不同,SuffixDecoding 利用根据先前生成的输出构建的后缀树来有效预测候选token序列。我们的方法可以实现灵活的树结构推测,而无需维护和编排额外模型的开销。 SuffixDecoding 构建并动态更新后缀树以捕获生成文本中的模式,并使用它们通过基于经验token频率的原则评分机制构建推测树。 SuffixDecoding 仅需要 CPU 内存,而在典型的 LLM 服务节点上,CPU 内存充足且未得到充分利用。我们证明,与基于模型的方法相比,SuffixDecoding 在不同的工作负载(包括开放域聊天、代码生成和文本到 SQL 任务)中实现了有竞争力的加速。对于开放式聊天和代码生成任务,SuffixDecoding 的输出吞吐量比 SpecInfer 高 1.4 倍,并且每个token时间 (TPOT) 延迟低 1.1 倍。对于专有的多 LLM 文本到 SQL 应用程序,SuffixDecoding 的输出吞吐量比推测解码高 2.9 倍,延迟低 3 倍。我们的评估表明ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值