Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

本文是LLM系列文章,针对《Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning》的翻译。

思想森林:扩展测试时间计算以增强LLM推理

摘要

大型语言模型(LLMs)在各种语言任务中表现出了非凡的能力,但解决复杂的推理问题仍然是一个挑战。虽然现有的方法,如思维链(CoT)和思维树(ToT),通过分解问题或构建提示来增强推理,但它们通常只执行一次推理,可能无法重新访问有缺陷的路径,从而影响准确性。为了解决这个问题,我们提出了一种新的推理框架,称为思想森林(FoT),它集成了多个推理树,以利用集体决策来解决复杂的逻辑问题。FoT利用稀疏激活策略来选择最相关的推理路径,提高了效率和准确性。此外,我们引入了一种动态自校正策略,可以实现实时纠错和从过去的错误中学习,以及共识引导的决策策略,以优化正确性和计算资源。实验结果表明,FoT框架与这些策略相结合,显著提高了LLM的推理能力,使其能够以更高的精度和效率解决复杂的任务。

1 引言

2 相关工作

3 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值