本文是LLM系列文章,针对《Mitigating Bias in Queer Representation within Large Language Models: A Collaborative Agent Approach》的翻译。
摘要
大型语言模型(LLMs)经常使代词使用中的偏见永久化,导致对queer个体的歪曲或排斥。本文探讨了LLM输出中有偏见的代词使用的具体问题,特别是当需要包容性语言来准确表示所有身份时,传统性别代词(“他”、“她”)的不当使用。我们引入了一个协作代理管道,旨在通过分析和优化代词的使用来减轻这些偏见,以实现包容性。我们的多代理框架包括用于偏见检测和纠正的专用代理。使用Tango数据集(一个专注于性别代词使用的基准)的实验评估表明,我们的方法显著提高了包容性代词分类,在正确反对不恰当的传统性别代词方面比GPT-4o提高了32.6个百分点(χ2=38.57,p<0.0001)。这些结果强调了代理驱动框架在增强人工智能生成内容的公平性和包容性方面的潜力,证明了它们在减少偏见和促进对社会负责的人工智能方面的有效性。