Strategic Prompting for Conversational Tasks: A Comparative Analysis of Large Language Models

本文是LLM系列文章,针对《Strategic Prompting for Conversational Tasks: A Comparative Analysis of Large Language Models Across Diverse Conversational Tasks》的翻译。

对话任务的策略提示:跨不同对话任务的大型语言模型的比较分析

摘要

鉴于会话人工智能的进步,大型语言模型(LLM)的评估和评价在确保各种会话任务的最佳性能方面发挥着至关重要的作用。在这篇论文中,我们进行了一项全面的研究,全面评估了五种流行的LLM的能力和局限性:Llama、OPT、Falcon、Alpaca和MPT。这项研究包括各种对话任务,包括保留、移情反应生成、心理健康和法律咨询、说服和谈判。为了进行评估,采用了广泛的测试设置,利用了从自动评估到人工评估的多种评估标准。这包括使用通用和特定任务的指标来准确衡量LLM的表现。根据我们的评估,没有一个单一的模型对所有任务都是普遍最优的。相反,它们的性能因每项任务的具体要求而异。虽然一些模型在某些任务中表现出色,但它们在其他任务中的表现可能相对较差。这些发现强调了在为会话应用程序选择最合适的LLM时考虑任务特定要求和特征的重要性。

1 引言

2 相关工作

3 方法和实验设置

4 评估设置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值