Toward Adaptive Reasoning in Large Language Models with Thought Rollback

本文是LLM系列文章,针对《Toward Adaptive Reasoning in Large Language Models with Thought Rollback》的翻译。

面向大语言模型的自适应推理与思维回退

摘要

大型语言模型(LLM)已被常规用于使用逐步推理来解决各种任务。然而,中间推理步骤或思想的结构是刚性和单向的,如链、树或无环有向图。因此,当LLM经常给出错误的反应,即“幻觉”时,由此产生的僵化和只向前的推理可能无法解决具有挑战性的任务,并失败。本文提出了一种新的推理框架,称为思维回滚(TR),允许LLM自适应地构建思维结构,同时保持对“幻觉”下问题解决的有效推理。TR的核心机制是回滚思想,它允许LLM对思想进行错误分析,从而回滚到任何以前错误的思想进行修改。随后,通过在提示中包含这种试错来指导LLM,每次回滚都会导致一个更可靠的推理路径。因此,从没有人工注释的简单提示开始,带TR的LLM自适应地逐步探索正确解决方案的思路。数学问题和多任务推理的综合实验证明了TR在解决问题率和交互成本方面的最新性能。例如,在MATH数据集上,具有TR的GPT-4的求解率比当前最佳解高出9%。源代码位于https://github.com/iQua/llmebase的examples/ThoughtRoll

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值