本文是LLM系列文章,针对《Toward Adaptive Reasoning in Large Language Models with Thought Rollback》的翻译。
摘要
大型语言模型(LLM)已被常规用于使用逐步推理来解决各种任务。然而,中间推理步骤或思想的结构是刚性和单向的,如链、树或无环有向图。因此,当LLM经常给出错误的反应,即“幻觉”时,由此产生的僵化和只向前的推理可能无法解决具有挑战性的任务,并失败。本文提出了一种新的推理框架,称为思维回滚(TR),允许LLM自适应地构建思维结构,同时保持对“幻觉”下问题解决的有效推理。TR的核心机制是回滚思想,它允许LLM对思想进行错误分析,从而回滚到任何以前错误的思想进行修改。随后,通过在提示中包含这种试错来指导LLM,每次回滚都会导致一个更可靠的推理路径。因此,从没有人工注释的简单提示开始,带TR的LLM自适应地逐步探索正确解决方案的思路。数学问题和多任务推理的综合实验证明了TR在解决问题率和交互成本方面的最新性能。例如,在MATH数据集上,具有TR的GPT-4的求解率比当前最佳解高出9%。源代码位于https://github.com/iQua/llmebase的examples/ThoughtRoll