M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models

本文是LLM系列文章,针对《M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models》的翻译。

M-Ped:大型语言模型的多提示集成解码

摘要

随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合来提高LLM的生成质量。给定一个唯一的输入X,我们以批处理模式向LLM提交n个带有X的提示变体,以解码和推导概率分布。对于每个token预测,我们通过平均批内的n个概率分布来计算集合概率,利用这个聚合概率来生成token。这种技术被称为InnerMatch Ensemble。为了促进高效的批处理推理,我们实现了左填充策略,以在n个提示中保持统一的输入长度。通过对各种NLP任务(包括机器翻译、代码生成和文本简化)的广泛实验,我们证明了我们的方法在提高LLM性能方面的有效性。结果显示BLEU评分有了实质性改善,pass@k与传统方法相比。

1 引言

2 方法

3 实验

4 研究

5 相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值