本文是LLM系列文章,针对《Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models》的翻译。
摘要
近年来,知识图谱作为项目侧的辅助信息被整合到推荐系统中,提高了推荐的准确性。然而,由于用户侧特征的粒度不当和固有稀缺性,构建和集成结构化用户侧知识仍然是一个重大挑战。大型语言模型(LLM)的最新进展通过利用其对人类行为的理解和广泛的现实世界知识,提供了弥合这一差距的潜力。然而,将LLM生成的信息集成到推荐系统中带来了挑战,包括噪声信息的风险和需要额外的知识迁移。在本文中,我们提出了一种基于LLM的用户端知识推理方法,以及一个精心设计的推荐框架来解决这些挑战。我们的方法采用LLM根据历史行为推断用户兴趣,将用户端信息与项目端和协作数据整合在一起,构建一个混合结构:协作兴趣知识图谱(CIKG)。此外,我们提出了一种基于CIKG的推荐框架,该框架包括用户兴趣重建模块和跨域对比学习模块,以减轻潜在的噪声并促进知识迁移。我们在三个真实世界的数据集上进行了广泛的实验,以验证我们方法的有效性。与竞争基线相比,我们的方法实现了最先进的性能,特别是对于交互稀疏的用户。