本文是LLM系列文章,针对《Dipper: Diversity in Prompts for Producing Large Language Model Ensembles in Reasoning tasks》的翻译。
摘要
大型语言模型在推理任务中仍然面临着巨大的挑战,特别是对于较小的模型,由于资源限制(例如GPU内存限制),许多用户可能会受到限制。提高LLM性能的推理时间方法,例如在响应中调用某些推理路径的提示方法,在过去的工作中已被证明是有效的,尽管它们在很大程度上依赖于顺序查询。集成方法由并行运行的多个组成模型组成,是一种有前景的方法,可以实现更好的推理时间性能,特别是考虑到最近的发展使LLM批量推理的速度显著提高。在这项工作中,我们提出了一种新颖的、无需训练的LLM集成框架,其中单个LLM模型并行地被馈送一组优化的、多样化的提示,有效地在推理时产生一个集成,以提高推理任务的性能。我们实证证明,我们的方法在数学推理任务上取得了显著进展,例如在math上,由几个小模型(例如,三个Qwen2-math-1.5B-it模型)组成的集成可以超越一个更大的模型(例如Qwen2-math-7B-it)。