Dynamic Attention-Guided Context Decoding for Mitigating Context Faithfulness Hallucinations

本文是LLM系列文章,针对《Dynamic Attention-Guided Context Decoding for Mitigating Context Faithfulness Hallucinations in Large Language Models》的翻译。

动态注意力引导的语境解码,以减轻大型语言模型中的语境忠实性幻觉

摘要

大型语言模型(LLM)经常出现上下文忠实幻觉,由于上下文利用不足和输出不确定性高,输出与检索到的信息存在偏差。我们的不确定性评估实验表明,高不确定性和幻觉之间存在很强的相关性。我们假设注意机制编码了指示上下文利用的信号,并通过探测分析进行了验证。基于这些见解,我们提出了动态注意力引导上下文解码(DAGCD),这是一个轻量级的框架,在单次解码过程中集成了注意力分布和不确定性信号。QA数据集的实验证明了DAGCD的有效性,在保持计算效率的同时,在忠实性和鲁棒性方面实现了显著提高。

1 引言

2 为什么不能产生可靠的答案?

3 注意力中的语境利用信号

4 方法

5 实验

6 讨论和分析

7 相关工作

Attention-guided CNN for image denoising》是一种用于图像去噪的神经网络模型。它基于卷积神经网络(CNN)的基本架构,但引入了注意力机制来提高去噪的效果。 在传统的CNN中,输入图像经过一系列卷积和池化操作,通过多个卷积层和全连接层进行特征提取和分类。然而,在图像去噪任务中,图像中不同区域的噪声水平可能不同,因此传统的CNN在对整个图像进行处理时可能无法有效地去噪。 为了解决这个问题,注意力机制被引入到CNN中。注意力机制可以将网络的注意力集中在图像的不同区域,以便更有针对性地去噪。该模型通过引入注意力模块,在每个卷积层之后对特征图进行处理,以增强重要区域的特征表示。这种注意力机制能够在去噪任务中更好地保留图像的细节和边缘,提高去噪效果。 具体来说,注意力模块通过学习图像的空间注意力和通道注意力来选择性地加权特征图。空间注意力用于选择特征图中的重要区域,而通道注意力用于选择特征图中的重要特征通道。通过这种方式,网络可以更加自适应地选择图像中重要的特征表示,从而更好地去除噪声。 实验证明,使用注意力机制的CNN模型在图像去噪任务上具有更好的性能。它在不同的噪声水平和噪声类型下都能够有效地去噪,并且能够保持图像的细节和结构。因此,这个注意力引导的CNN模型在图像去噪任务中具有一定的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值