本文是LLM系列文章,针对《Extending Language Model Context Up to 3 Million Tokens on a Single GPU》的翻译。
摘要
在现代大型语言模型(LLM)中,处理非常长的上下文长度带来了重大挑战,因为它会导致推理速度减慢和内存成本增加。此外,大多数现有的预训练LLM无法超越其原始训练序列长度。为了实现高效实用的长上下文利用,我们引入了InfiniteHiP,这是一种新颖实用的LLM推理框架,通过模块化分层token修剪算法动态消除不相关的上下文token来加速处理。我们的方法还允许通过根据LLM内的内部注意力模式选择性地应用各种RoPE调整方法来泛化更长的序列。此外,我们在推理过程中将键值缓存卸载到主机内存,从而显著降低了GPU内存压力。因此,InfiniteHiP能够在单个L40s 48GB GPU上处理多达300万个token,而不会永久丢失上下文信息。我们的框架在100万个token上下文中实现了18.95倍的注意力解码加速,而不需要额外的训练。我们在SGLang框架中实现了我们的方法,并通过广泛的评估证明了其有效性和实用性。