Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

本文是LLM系列文章,针对《Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach》的翻译。

摘要

我们研究了一种新的语言模型架构,该架构能够通过潜在空间中的隐式推理来缩放测试时间计算。我们的模型通过迭代一个循环块来工作,从而在测试时展开到任意深度。这与通过产生更多token来扩展计算的主流推理模型形成鲜明对比。与基于思维链的方法不同,我们的方法不需要任何专门的训练数据,可以在小的上下文窗口中工作,并且可以捕获不易用语言表示的推理类型。我们将概念验证模型扩展到35亿个参数和8000亿个token。我们证明,由此产生的模型可以提高其在推理基准上的性能,有时甚至可以显著提高,计算负载相当于500亿个参数。

1 在连续空间中通过思维进行缩放

2 为什么要训练具有循环深度的模型?

3 可扩展的循环架构

4 训练大规模递归深度语言模型

5 基准结果

6 循环深度简化了LLM

7 在循环深度模型中,按比例出现了哪些机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值