SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training

本文是LLM系列问题,针对《SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training》的翻译。

SFT记忆,RL概括:基础模型后训练的比较研究

摘要

监督微调(SFT)和强化学习(RL)是基础模型训练后广泛使用的技术。然而,它们在增强模型泛化方面各自的作用尚不清楚。本文研究了SFT和RL在泛化和记忆方面的比较效果,重点研究了基于文本和视觉环境。我们介绍了算术推理纸牌游戏GeneralPoints,并考虑了现实世界的导航环境V-IRL,以评估用SFT和RL训练的模型如何泛化到文本和视觉领域中看不见的变体。我们发现,强化学习,特别是在基于结果的奖励训练中,在基于规则的文本和视觉环境中都具有普遍性。相比之下,SFT倾向于记忆训练数据,并在任何一种情况下都难以进行非分布的泛化。进一步的分析表明,强化学习提高了模型的潜在视觉识别能力,有助于增强其在视觉领域的泛化能力。尽管强化学习具有优越的泛化能力,但我们表明SFT仍然有助于有效的强化学习训练:SFT稳定了模型的输出格式,使后续的强化学习能够实现其性能提升。这些发现证明了强化学习在复杂、多模态任务中获取可概括知识的优势。

1 引言

2 相关工作

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值