Forgetting Curve: A Reliable Method for Evaluating Memorization Capability for Long-context Models

本文是LLM系列文章,针对《Forgetting Curve: A Reliable Method for Evaluating Memorization
Capability for Long

遗忘曲线:一种评估长上下文模型记忆能力的可靠方法

摘要

最近的许多工作旨在扩展语言模型的有效上下文长度,并且存在各种方法、任务和基准来衡量模型的有效记忆长度。然而,通过深入调查,我们发现目前对模型记忆能力的评估存在局限性。我们对这项工作的局限性进行了广泛的调查,并提出了一种称为遗忘曲线的新方法来衡量长上下文模型的记忆能力。我们表明,遗忘曲线具有对测试语料库和实验设置具有鲁棒性、不依赖于提示的优点,并且可以应用于任何模型大小。
我们将遗忘曲线应用于涉及Transformer和基于RNN/SSM架构的各种模型。我们的测量为Transformer扩展技术的有效性提供了经验证据,同时对基于RNN/SSM的模型的有效长度提出了质疑。我们还研究了我们的衡量标准与现有基准之间的差异,以及各种模型的流行指标。我们的代码和结果可以在以下https://github.com/1azybug/ForgettingCurve找到。

1 引言

2 远程记忆测量的局限性

3 遗忘曲线

4 实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值