本文是LLM系列文章, 针对《Meta-Reasoner: Dynamic Guidance for Optimized Inference-time
Reasoning in Large Language Models》的翻译。
摘要
大语言模型(LLMs)越来越依赖冗长的推理链来解决复杂任务。然而,这种试错方法往往会导致高昂的计算成本和错误传播,早期的错误可能会使后续步骤偏离正轨。为解决这些问题,我们引入了Meta-Reasoner框架,它通过让大语言模型 “思考如何思考” 来动态优化推理时的推理过程。受人类元认知和双过程理论的启发,Meta-Reasoner就像一个战略顾问,将高级指导与逐步生成过程分离。它采用上下文多臂老虎机算法迭代评估推理进展,选择最优策略(如回溯、消除歧义、从头开始或提出替代方法),并将计算资源重新分配到最有希望的路径上。我们在数学推理和谜题任务上的评估,凸显了动态推理链在克服大语言模型推理过程中固有挑战的潜力,也展示了其在更广泛应用中的前景,为推理密集型任务提供了一种可扩展且适应性强的解决方案。
引言
类似思维链(o1-like reasoning cha