摘要
思维链(CoT)推理使大语言模型(LLMs)能够通过中间token进行额外计算,以解决复杂任务。然而,我们认为典型的推理过程包含许多冗余token,导致了额外的推理成本。通过研究当前大语言模型的输出分布,我们发现它们相较于默认行为,具备更简洁推理的潜在能力。为激发这种能力,我们提出了简单的微调方法,在特定任务设置中,利用通过N选1采样(best-of-N sampling)和少样本条件设定(few-shot conditioning)生成的自生成简洁推理路径。我们的组合方法在GSM8K和MATH数据集上,对五个模型系列进行实验,结果显示平均输出token减少了30%,同时保持了平均准确率。通过利用大语言模型的基本随机性和上下文学习能力,我们的自训练方法在广泛的模型上都能有效地激发简洁推理,包括那些经过大量后期训练的模型。
引言
思维链(CoT)推理显著提升了大语言模型(LLMs)执行复杂任务的能力(Wei等人,2022b)。CoT推理的有效性归因于推理过程