Self-Training Elicits Concise Reasoning in Large Language Models

摘要

思维链(CoT)推理使大语言模型(LLMs)能够通过中间token进行额外计算,以解决复杂任务。然而,我们认为典型的推理过程包含许多冗余token,导致了额外的推理成本。通过研究当前大语言模型的输出分布,我们发现它们相较于默认行为,具备更简洁推理的潜在能力。为激发这种能力,我们提出了简单的微调方法,在特定任务设置中,利用通过N选1采样(best-of-N sampling)和少样本条件设定(few-shot conditioning)生成的自生成简洁推理路径。我们的组合方法在GSM8K和MATH数据集上,对五个模型系列进行实验,结果显示平均输出token减少了30%,同时保持了平均准确率。通过利用大语言模型的基本随机性和上下文学习能力,我们的自训练方法在广泛的模型上都能有效地激发简洁推理,包括那些经过大量后期训练的模型。
在这里插入图片描述

引言

思维链(CoT)推理显著提升了大语言模型(LLMs)执行复杂任务的能力(Wei等人,2022b)。CoT推理的有效性归因于推理过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值