HaLoRA: Hardware-aware Low-Rank Adaptation for Large Language Models Based on Hybrid

摘要

低秩自适应(LoRA)是一种主流的参数高效微调方法,用于使大语言模型(LLMs)适应下游任务。在本文中,我们首次提出将LoRA微调后的大语言模型部署在混合内存计算(CIM)架构上(即,预训练权重存储在RRAM中,LoRA存储在SRAM中)。为了解决RRAM固有噪声导致的性能下降问题,我们设计了一种新颖的硬件感知低秩自适应(HaLoRA)方法,旨在通过对齐理想和噪声条件下的训练目标,训练出既稳健又准确的LoRA分支。对LLaMA 3.2 1B和3B模型进行微调的实验证明了HaLoRA在多个推理任务中的有效性,在不同噪声水平下保持稳健性的同时,平均得分提高了22.7。
在这里插入图片描述

引言

大语言模型(LLMs),如GPT-4、LLaMA和Qwen,在各种自然语言处理(NLP)任务中展现出了出色的性能。然而,这种主要由大量模型参数驱动的成功,在实际应用中带来了两个关键挑战。第一,通过全模型微调使大语言模型适应下游任务需要巨大的计算资源。第二,模型推理需要大量的能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值