LangFair: A Python Package for Assessing Bias and Fairness in Large Language Model Use Cases

文章主要内容

  1. 背景与问题:传统机器学习公平性工具包不适用于大语言模型(LLMs)的生成性和上下文依赖特性,现有评估工具多在模型层面基于静态基准数据集评估LLMs,未考虑提示特定风险和实际任务,无法代表系统真实性能。
  2. LangFair介绍:开源Python包,采用“自带提示”(BYOP)方法,根据用户提供的提示计算指标,评估LLMs用例的偏差和公平性风险。
  3. 功能模块
    • 评估数据集生成ResponseGenerator类简化评估数据集生成;CounterfactualGenerator类用于检查通过无意识实现公平(FTU),构建反事实输入对并生成相应响应。
    • 偏差和公平性评估:根据评估风险(毒性、刻板印象、反事实不公平和分配性伤害)和用例任务(文本生成、分类和推荐)对评估指标进行分类,不同类提供相应指标计算方法。
    • 半自动化评估AutoEval类为文本生成用例提供多步骤综合公平性评估,包括指标选择、数据集生成和
为评估生成模型的改进精确度和召回率指标,首先需要理解生成模型的基本概念。生成模型是一种用于根据给定的输入数据生成新样本的机器学习模型。它可以学习数据的分布,并生成与训练数据相似的新样本。 精确度和召回率是评估模型性能的重要指标。精确度衡量模型生成的样本中正确样本的比例,而召回率衡量模型是否能够完整地生成真实样本的比例。 对于评估生成模型的精确度和召回率,可以考虑以下改进指标: 1. 平均精确度:除了计算总体精确度外,还可以计算每个类别的精确度,并求其平均值。这可以帮助我们了解模型在不同类别上的性能差异,并对结果进行更精细的分析。 2. 样本多样性:在评估生成模型时,除了关注精确度和召回率,还应注意样本生成的多样性。生成模型应该能够生成多样化的样本,而不仅仅是在训练数据上的复制。我们可以使用多样性指标,如样本覆盖率和互信息来衡量生成样本的多样性。 3. 异常检测:生成模型应能够生成稀有或异常样本。因此,我们可以引入一个异常检测指标,例如生成模型中的KL散度,以评估模型对于异常样本的生成能力。 4. 推断速度:对于生成模型的评估,推断速度也是一个重要的指标。快速的推断能力可以提高模型的实时性,使其适用于许多实际应用。 通过引入这些改进指标,我们可以更全面地评估生成模型的性能。这些指标可以提供有关模型的精确度、召回率、样本多样性、异常检测和推断速度等方面的信息,帮助我们更好地了解生成模型的潜力和局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值