Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning

在这里插入图片描述

文章主要内容与创新点总结

主要内容
  1. 模型设计
    Fin-R1是一个专为金融领域设计的轻量级大语言模型(70亿参数),通过监督微调(SFT)和强化学习(RL)两阶段训练框架,解决金融推理中的核心问题。

  2. 数据集构建
    提出了高质量金融推理数据集Fin-R1-Data,包含60,091条多维度金融知识样本,涵盖中文和英文双语内容,通过数据蒸馏和过滤确保准确性。

  3. 训练方法

    • 监督微调(SFT):基于Qwen2.5-7B-Instruct模型,优化金融推理能力。
    • 强化学习(RL):采用**Group Relative Policy Optimization (GRPO)**算法,结合格式奖励和准确性奖励,提升回答的规范性和内容质量。
    • </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值