Modifying Large Language Model Post-Training for Diverse Creative Writing

在这里插入图片描述

文章总结

主要内容

本文针对大型语言模型(LLMs)在创意写作任务中生成多样性不足的问题,提出了通过后训练优化提升输出多样性的方法。研究发现,现有后训练方法(如DPO、ORPO)在提升生成质量的同时,往往导致多样性下降。作者提出在训练目标中引入偏差(deviation)指标,即计算同一提示下训练样本与其他样本的差异程度,以鼓励模型学习罕见但高质量的生成模式。通过扩展DPO和ORPO,提出了DDPO(Diversified DPO)DORPO(Diversified ORPO),并通过实验验证了这些方法在保持生成质量的同时显著提高了语义和风格多样性。最佳模型(基于Llama-3.1-8B)在多样性上与人类创作数据集相当,质量接近GPT-4o和DeepSeek-R1等先进模型。

创新点
  1. 偏差驱动的训练目标:将样本与同提示下其他样本的差异(偏差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值