文章总结
主要内容
本文针对大型语言模型(LLM)在创意写作任务中输出多样性不足的问题,提出了通过后训练(post-training)方法同时提升生成质量和多样性的解决方案。传统的后训练方法(如DPO、ORPO)虽然能提高生成质量,但会显著降低多样性。作者引入偏差(deviation)概念,即同一提示下训练样本与其他样本的差异程度,并将其整合到训练目标中,形成了多样化DPO(DDPO)和多样化ORPO(DORPO)。实验表明,这些方法在保持质量的同时,使模型输出多样性接近人类创作数据集,且优于现有指令调优模型(如GPT-4o、DeepSeek-R1)。
创新点
- 偏差整合训练目标:首次将“偏差”作为训练目标的一部分,通过加权损失函数强调罕见高质量样本的学习。
- 多样化后训练方法