Modifying Large Language Model Post-Training for Diverse Creative Writing

在这里插入图片描述

文章总结

主要内容

本文针对大型语言模型(LLM)在创意写作任务中输出多样性不足的问题,提出了通过后训练(post-training)方法同时提升生成质量和多样性的解决方案。传统的后训练方法(如DPO、ORPO)虽然能提高生成质量,但会显著降低多样性。作者引入偏差(deviation)概念,即同一提示下训练样本与其他样本的差异程度,并将其整合到训练目标中,形成了多样化DPO(DDPO)多样化ORPO(DORPO)。实验表明,这些方法在保持质量的同时,使模型输出多样性接近人类创作数据集,且优于现有指令调优模型(如GPT-4o、DeepSeek-R1)。

创新点
  1. 偏差整合训练目标:首次将“偏差”作为训练目标的一部分,通过加权损失函数强调罕见高质量样本的学习。
  2. 多样化后训练方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值