Video-R1: Reinforcing Video Reasoning in MLLMs

在这里插入图片描述

文章主要内容总结

研究背景与目标

本文针对多模态大语言模型(MLLMs)在视频推理任务中的不足,提出了Video-R1模型,旨在通过强化学习(RL)范式系统性提升模型的视频推理能力。现有方法在视频推理中面临两个核心挑战:缺乏时间建模能力和高质量视频推理数据稀缺。

方法创新点
  1. T-GRPO算法
    提出时间增强的群体相对策略优化算法(T-GRPO),通过对比有序和随机打乱的视频帧序列推理结果,显式鼓励模型利用时间信息进行推理,避免依赖单帧捷径。

  2. 混合数据集构建
    构建了两个数据集:

    • Video-R1-COT-165k:用于监督微调(SFT)的冷启动,包含图像和视频的链式思维(CoT)注释。
    • Video-R1-260k:用于RL训练,结合图像和视频数据ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值