一、主要内容和创新点总结
-
研究背景:
现有序列推荐模型(如SASRec、BERT4Rec)采用直接前向计算范式,仅用序列编码器的最终隐状态作为用户表示,难以捕捉复杂用户偏好演变和长尾物品推荐。 -
核心创新:
- ReaRec框架:首次提出推理增强的序列推荐框架,通过多步隐式推理深化特征交叉
- 推理位置嵌入(RPE):解耦序列编码和推理阶段的表示空间
- 两种学习策略:
- 集成推理学习(ERL):多步监督优化+KL散度正则化
- 渐进推理学习(PRL):温度退火+推理对比学习
- 关键发现:
- 在5个真实数据集上平均提升7.49%性能,仅增加3.51%推理延迟
- 长尾用户/物品性能显著提升,模型性能天花板提高30-50%
- 揭示推理深度与用户序列复杂度的非线性关系