Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation

在这里插入图片描述

一、主要内容和创新点总结

  1. 研究背景:
    现有序列推荐模型(如SASRec、BERT4Rec)采用直接前向计算范式,仅用序列编码器的最终隐状态作为用户表示,难以捕捉复杂用户偏好演变和长尾物品推荐。

  2. 核心创新:

  • ReaRec框架:首次提出推理增强的序列推荐框架,通过多步隐式推理深化特征交叉
  • 推理位置嵌入(RPE):解耦序列编码和推理阶段的表示空间
  • 两种学习策略:
    • 集成推理学习(ERL):多步监督优化+KL散度正则化
    • 渐进推理学习(PRL):温度退火+推理对比学习
  1. 关键发现:
  • 在5个真实数据集上平均提升7.49%性能,仅增加3.51%推理延迟
  • 长尾用户/物品性能显著提升,模型性能天花板提高30-50%
  • 揭示推理深度与用户序列复杂度的非线性关系

摘要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值