Quantum Large Language Model Fine-Tuning

主要内容

  1. 研究背景与目的:大语言模型(LLM)微调是使预训练模型适应特定任务的重要方式,文章探索将量子计算集成到LLM微调中,旨在提升模型在复杂任务中的分类能力,特别是处理数据的非局部相关性。
  2. 方法:提出一种混合量子 - 经典深度学习架构。经典部分采用Sentence Transformer(SetFit),量子部分由具有长程连接的参数化量子电路构成。详细介绍了相关概念,如角度编码、量子数据重上传、量子电路的基本构建块(ansatz)等,并阐述了整体架构、量子启发的潜在向量、单编码器和多编码器设计以及能耗估计等内容。
  3. 实验:以斯坦福情感树库(SST2)数据集进行二分类任务,在低数据 regime下进行实验。研究了模型在不同超参数设置下的性能,包括量子比特数、主块层数、重上传次数、重上传层数等;通过消融实验量化各组件对模型性能的贡献;在训练和推理过程中引入噪声模拟,验证方法在现实条件下的适用性;还对计算设置进行了说明。
  4. 结果:单编码器架构中,准确率随量子比特数增加呈上升趋势,但18比特时出现异常;多编码器架构比单编码器架构准确率更高。重上传次数和重上传层数对准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值