Fairness Mediator: Neutralize Stereotype Associations to Mitigate Bias in Large Language Models

在这里插入图片描述

主要内容

  1. 研究背景:大语言模型(LLMs)在多种应用中表现出色,但存在公平性问题,常从训练数据中吸收虚假相关性,导致对特定社会群体的刻板印象关联,引发公平性担忧。已有偏差缓解技术存在计算资源需求大或效果有限的问题。
  2. 方法:提出FairMed框架,受LLMs中MLP层线性联想记忆机制启发,假设偏差概念和社会群体类似地编码为实体(键)和信息(值)对。框架包含两个核心组件:刻板印象关联探测器(stereotype association prober),用于捕捉MLP层激活中编码的刻板印象关联;对抗去偏中和器(adversarial debiasing neutralizer),在推理时调整MLP激活,使不同社会群体的关联概率相等。
  3. 实验评估:使用四个来自LLaMA系列的聊天模型,在九个受保护属性上进行实验。结果表明,FairMed在减轻偏差方面显著优于六种基线方法,在LLaMA - 2 - Chat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值