Fewer Hallucinations, More Verification: A Three-Stage LLM-Based Framework for ASR Error Correction

在这里插入图片描述

文章主要内容

本文针对自动语音识别(ASR)纠错任务,提出了一种基于大语言模型(LLM)的三阶段可靠纠错框架 RLLMCF(Reliable LLM Correction Framework),旨在解决直接使用LLM时的幻觉问题(Hallucinations)——即LLM可能错误修改正确文本或生成无关内容。

  • 三阶段框架
    1. 错误预检测:先判断输入文本是否存在错误,避免LLM修改正确内容。
    2. 链式思维子任务迭代纠正:将纠错分解为定位错误、生成发音候选、筛选等子任务,通过多轮迭代和置信度评估约束LLM输出空间。
    3. 推理过程验证:检查LLM输出是否符合格式要求和推理逻辑,拒绝不合理修正。
  • 实验结果:在AISHELL-1、AISHELL-2和Librispeech数据集上,使用GPT-4o模型时,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值