Harnessing Large Language Models for Scientific Novelty Detection

在这里插入图片描述

文章主要内容

本文提出利用大型语言模型(LLMs)进行科学新颖性检测(ND),并构建了营销和NLP领域的两个新数据集。通过基于LLM的知识蒸馏框架训练轻量级检索器,使其从LLMs中提取概念级知识,实现相似概念的对齐,从而高效准确地进行想法检索和新颖性检测。实验表明,该方法在基准数据集上的表现优于其他方法。

文章创新点

  1. 构建专用基准数据集:提出基于论文关系提取闭包集,并利用LLMs总结核心思想,确保数据集的封闭性和紧凑性。
  2. LLM知识蒸馏框架:通过生成合成的非新颖想法(改写、部分、增量想法),将LLMs的概念级知识蒸馏到轻量级检索器中,弥补文本相似性与概念理解之间的差距。
  3. RAG-based新颖性检测策略:结合检索器和LLMs进行交叉验证,通过结构化提示引导LLM生成新颖性分数,并利用决策树分类器进行最终判断。

Abstract

在科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值