Benchmarking Large Language Models for Cryptanalysis and Mismatched-Generalization

文章主要内容与创新点总结

一、主要内容
  1. 研究背景与目标
    • 大语言模型(LLMs)在自然语言处理中表现优异,但在密码分析(cryptanalysis)领域的评估尚未被充分探索。本文旨在评估LLMs对不同加密算法生成文本的解密能力及其潜在的安全风险(如越狱攻击)。
  2. 方法与数据集
    • 构建了一个新颖的基准数据集,包含4509个样本,覆盖9种加密算法(如凯撒密码、RSA、AES等),文本类型包括不同长度、领域(科学、医学、法律等)和写作风格(莎士比亚文本、方言等)。
    • 在零样本(zero-shot)和少样本(few-shot)设置下,评估了GPT-4o、Claude、Mistral等9个LLMs的解密准确率和语义理解能力。
  3. 关键发现
    • LLMs的密码分析能力局限:仅对预训练中常见的简单加密(如凯撒密码、摩尔斯电码)表现良好,对复杂加密(如RSA、AES)解密能力差,但仍能部分理解加密文本的语义
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值