SEAR: A Multimodal Dataset for Analyzing AR-LLM-Driven Social Engineering Behaviors

文章主要内容总结

SEAR(Social Engineering via AR-LLM)是一个多模态数据集,旨在研究增强现实(AR)与多模态大语言模型(LLM)驱动的社会工程(SE)攻击威胁。该数据集包含60名参与者在模拟会议、课堂等场景中的180段标注对话,整合了AR捕捉的视听线索(如面部表情、语调)、环境上下文、社交媒体资料,以及信任评分、易感性评估等主观指标。

核心发现显示,SEAR攻击的合规率极高:93.3%的参与者点击钓鱼链接,85%接听诈骗电话,76.7%在互动后信任度显著提升。数据集支持AR驱动社会工程攻击的检测研究、防御框架设计及多模态对抗操纵机制分析,并通过匿名化和IRB合规性确保伦理使用。其官网为:https://github.com/INSLabCN/SEAR-Dataset

文章创新点总结

  1. 首个多模态AR-LLM社会工程数据集:整合AR视觉/音频数据、LLM生成的对话及主观信任指标,填补单模态研究空白。
  2. 五层结构化数据框架:包含对话场景、个人信息、社会档案、互动对话和事后调查,覆盖攻击全流程。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值